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ABSTRACT   

The paper deals with the estimation of survival function with the use of  linear hazard function  and exponential 

base line distribution. Considering cox PH model with exponential base line distribution, the maximum likelihood 

estimator of general linear parametric function of regressors and frailty parameter has been obtained by taking very general 

form of the regression matrix and estimator being biased its MSE is obtained. Further the same has been estimated by least 

square theory using Gauss-Markoff model and it has been compared with usual estimator. The results have been applied by 

taking kidney infection data. 
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1.   INTRODUCTION   

The Cox proportional hazard model is extensively used in medical research as Survivor model. Cox proportional 

hazard model uses regression analysis for censored data. In Cox proportional hazard model the explanatory variables or co-

variates are studied for the random effect of covariates on distribution of survivor times. Unfortunately we are unable to 

include the relevant covariates related to diseases in many cases due to unawareness of the factor. 

When random effects (frailties) are included, the failure time distribution obtained by integration over the 

distribution of frailties loses this simple cancellation property. For such failure time distribution Hougaard (1986a, 1986b), 

Prentice, Williams and Peterson (1981) have introduced some models. The Maximum Likelihood Estimation (MLE) 

method and the Best Linear Unbiased Predictor (BLUP) method have been used by Handerson (1975) and McGilchrist and 

Aisbett(1991). 

Particularly useful family of baseline model is obtained from a univariate lifetime model with hazard function 

 by defining   

 

where  =  and  =  

and by including the baseline distribution of , the hazard function will be  
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In this article we consider the baseline distribution of z as exponential distribution defined as 

 ,      

Let  be the random variable associated with the survivor function, . One would like to examine the effect 

of particular regressor variables in relation to the proportional hazard assumption such as  =  =  +  taking 

=  ,  being error term which corresponds to shared frailty model which relates to  the covariates in addition to 

regressor covariates  . Since the exponential distribution has hazard function constant and whenever hazard function 

turns out to be constant, the base line distribution is exponential distribution and therefore we consider the base line 

distribution of each  as   

  =  ,       ,   ,              

with  =  and  = ,  

So the model for  turns out as 

                (1.1) 

where is nx1vector, ( ,  is nxp matrix  of known 

constants,  is  vector of parameters  and   =  is error vector responsible for frailty 

model. We assume that the distribution of each component  of   is to be referred as baseline exponential distribution.  

In this article we use Maximum Likelihood (ML) and Least square methods for estimating linear function of 

regression coefficients and frailty parameter such as  

 ∆ =   +  

where   = and  are known, which relates to the frailty and shared frailty parameters   and  

in section 2. By using Gauss-Marcoff model in Cox PH model the estimation of regression and frailty parameter by taking 

exponential base line distribution has been dealt with in section 3. Further both methods have been illustrated by taking 

real data obtained by McGilchrist  and Aisbett (1991) on kidney infection in section 4. 

2.   ESTIMATION OF ∆∆∆∆ BY MAXIMUM LIKELIHOOD METHOD. 

In Cox PH model, let individual frailty variable  follow exponential distribution with p.d.f. as 

  =  ,  ≥ 0 ,   ,       n        (2.1) 

with assumptions given in section 1.                                                                  
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Let  where  is the time recorded for the individual and  follows negative exponential 

distribution with Cox PH model, having  . 

where  as  

 

Now considering  =  as parameters of n-variate negative exponential distribution the model 

given in (1.1) is  

  =  + . 

Using the mean and variance of the exponential distribution of   , we have 

 ( ) =          where  is n-vector of unity. 

 ( ) =  +  and ( ) = ( ) =  

Let   be a random sample on  and let  be the corresponding ordered random 

sample. Thus the likelihood ( , ) of   at  being 

 ( , ) =  

  =  

the m.l.e. of  of  is given by  

  = . 

   i.e.  

  =              (2.2) 

Further, 

  = 0 

leads to the m.l.e. of  as 
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  = - ,                (2.3) 

where  

  =  

For given p-vector  and a given constant , the m.l.e. of ∆ =   +  is 

   =  + ,                 (2.4) 

where  

                             (2.5) 

where   of matrix   in the sense of .  

If   belongs to the row space of   and  belongs to the column space of    then   is obviously unique 

and unbiased.   

By using 

 .  

  

  

 ( )  

 =        where  is defined in (2.5) 

 is unbiased for ∆ if  belongs to the row space of   and belongs to the column space of . 

Further, also  is unbiased for ∆ if 

                (2.6) 

otherwise it is biased and the bias is  

 Bias =  

 =  
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If  is unbiased under condition (2.6), the variance of the m.l.e.  of ∆ is 

 ( ) =  

  =  

          where  is defined in (2.2.5)                           

                 (2.7) 

and the estimated ( ) is 

  .    

Also the estimated standard error is 

                 (2.8) 

The variance of the unbiased estimator of ∆ under the conditions of estimability either given in (2.6) or  belongs 

to the row space of  and  belongs to the column space of  , is , which does not involve . We note that for 

fixed , , ,  the minimization of ( ) is equivalent to the minimization of  when 

holds. 

When the m.l.e.,  of  is not unbiased estimator of  , the Mean Square Error(MSE) of   is  

 ( ) =  

     =  

     

     

                    (2.9) 

If  , the unbiased estimator of  is better than MSE estimator of .  

As  reduces to    
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 i.e.                        (2.10) 

Generally,  is less than 1 and  is generally taken as 1. In general MSE estimator is better than unbiased 

estimator when Cox PH frailty model is used. 

3.   ESTIMATION OF  ∆∆∆∆ BY LEAST SQUARE METHOD OF SHARED EXPONENTIAL FRAIL TY 

MODEL 

Since the p.d.f   of survivor time  of  individual is expressed in shared frailty model as  

   =             (3.1) 

where  is shared frailty variable and   is hazard function of exponential distribution which is 

constant,  and the p.d.f. of n variates will be 

  =  =  

Taking logarithm, we get 

  =    

     =  

     =  +                   (3.2) 

and denoting   by  and taking n-vector  as n-variate frailty exponential distribution the model is  

  =  +  

which is defined in (1.1). 

Now reconstructing the model (1.1) as 

  =  +  +                (3.3) 

where  =  -  such that ( ) = 0 and ( ) =  

Let ( ) =  

then least square method demands to solve the following equations 

  

and  
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Now  

                (3.4) 

   +  =             (3.5) 

From (3.4) we have  in terms of  as 

  =  

     = ( )           (3.6) 

where  = , taking  

Substituting   in (3.5), we get 

  =  

  

 ]  =  

  

  

   and is   

idempotent matrix. 

  =              (3.7) 

Using (3.7) in (3.6) 

         (3.8) 

Also, 

 ( ) =  
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  =  

  =           (3.9) 

REMARK (3.1)  

We note that  is the usual regression estimator of   . Due to shared frailty, the estimator is reduced 

by the quantity  which shows that the frailty has negative effect in the estimation of primary 

covariates.  

Particularly, when , the shared frailty is neglected and in this case the regression frailty is usual, regression 

estimator,  = , and hence no new covariates are necessary to explain hazard rate or survivor function. This 

is due to exponential base line distribution.  

4. APPLICATION TO KIDNEY INFECTION PATIENTS. 

For illustration we use the kidney infection data given by McGilchrist  and Aisbett (1991) of 38 kidney Patients 

using portable  dialysis. A catheter is inserted to each admitted kidney Patient and keeps it until infection is removed, that 

is infection is cleared. After some time again catheter is inserted and removed when infection occurs due to kidney or some 

other reasons. Time (in number of days) recorded when catheter is reinserted. The purpose is to note the incidence rate of 

infection to risk variables (Age,Sex and disease type of kidney disorder, Glomerulo Neptiritis(GN),Acute Neptiritis(AN) 

and Polycyatic Neptiritis(PKD). The time interval recorded is considered as random variable and according to Cox PH 

model we have illustrated the estimation by MLE, using the best linear unbiased prediction (BLUP). Estimation of the 

problem is described in McGilchrist and Aisbett (1991). We have obtained maximum likelihood estimator (M.L.E.) of 

main covariates Age(X1), Sex(X2) along with other correlated covariates like GN(X3), AN(X4) and PKD(X5). Also BLUP 

of regression coefficient,   and  with its linear function ∆ =   +   is obtained. Not only by MLE 

Method linked with BLUP but obtained independently using linear model.  

We give below the estimates of regression coefficients,  and  on the basis of the data given in 

McGilchrist and Aisbett (1991) by taking time variate  of recording time when catheter is inserted first time and  is log 

. The maximum likelihood estimates are obtained by using (2.2), (2.3) and (2.8). where X38x5 is a matrix representing 38 

patients and 5 covariates X1, X2, X3, X4, X5 and ,   

4.1. APPLICATION OF (2.2), (2.3) AND (2.8) TO GET M.L.E. OF  AND  

Following Table 4.1 gives the estimates of by M.L. method and their standard errors. 

Table 4.1 

Variable Age Sex GN AN PKD 
Regression coefficient estimate 0.011535 0.228179 0.002059 -0.08724 0.044094 
Standard error 0.008532 0.168784 0.001523 0.064528 0.032616 
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The estimate of the variance is 0.021587. In general the effect of the prior distribution on frailty is to shrink the 

estimate towards the origin. The only regression coefficients i.e. significantly large compared to its standard error is that of 

the age variable, indicating a lower infection rate for the lower age of the patients. 

 = 3.160408 

The value of frailty parameter is  

ln( ) = ln(3.160408) = 1.150701 

We note that taking  and 1 that is, 

, the MSE of  turns out as 1.349332 and the condition given in  

(2.10) is not justified and hence MSE estimator is better than unbiased estimator of frailty parameters.  

Particular Cases 

S.N. 
Cases 

      s.e( ) 

1 1 0 0 0 0   1.162236 0.008532 
2 0 1 0 0 0   1.37888 0.168784 
3 1 1 1 1 1   1.349332 0.146927 
4 1 1 0 0 0   1.390415 0.177316 

 

This concludes the combined effect of age and sex on the estimate being significantly large. Age and sex has 

lower infection rate. Thus the primary covariates are much more significant rather than other covariates. 

4.2.   APPLICATION OF (3.8) AND (3.9) TO GET BLUP OF  AND .  

Using the result (3.8) and (3.9) the usual estimates of  and their s.e. are presented in table 4.2. 

Also the BLUP estimates of  with their s.e. are presented in table  4.3. 

Here, we have ,     =  = 3.60439 

The value of frailty parameter is ln( ) = ln(3.60439) = 1.282152 

Table 4.2: Usual Estimates (Without Frailty) of  with s.e 

Variable Age( ) Sex( ) GN( ) AN( ) PKD( ) 

Regression coefficient estimate 0.049381 2.68169 -0.4497 -1.4122 0.364796 
Standard error 0.014662 0.520854 0.768717 0.759195 0.979725 

 
Table 4.3: Regression Estimates (With Frailty) of  with s.e 

Variable Age( ) Sex( ) GN( ) AN( ) PKD( ) 

Regression coefficient estimate 0.028043 2.259586 -0.45351 -1.25082 0.283228 
Standard error 0.014662 0.520854 0.768717 0.759195 0.979725 
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From above two tables (4.2) and (4.3) we observe that the estimates of frailty parameters are smaller than those of 

usual BLUP values of  even though their estimates of s.e. are same.   

CONCLUSIONS 

Theoretically it is observed that the m.l.e. of primary covariates when frailty covariates are present in terms of 

hazard function parameter with cox PH model are more advisable to use rather than usual BLUP estimator and this is 

supported by data on kidney infection. 
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